Alan Tupai	Integration as Area
Vista Murrieta High School	AP Readiness Session 6 - February
Website: www.ymbs.net	
(Click on "Teachers" then "Alan Tunai")	Answers to examples posted on my website
(chek on reachers then Alan rupaj)	Answers to examples posted on my website
General Problem Stens	Fxamples
Given the graph of a function, find the area	$f(\mathbf{x})$
under the function over a given interval.	▲
(same as the definite integral of the function	(4, 2) (6, 2)
over the interval)	(-6, 1)
(must be linear or circular to use geometry)	
с <i>с и</i>	(-4, 0) (7, 0) (9, 0)
• Divide up the given interval into	
geometric shapes	▼ ^(0,-2)
• Area below the x-axis is considered	2 9
negative	1. Find $f(x)dx =$ 2. Find $f(x)dx =$
 If limits of integration are left to 	
right (low to high), then each area	
changes sign	3. Find $\int f(x)dx =$ 4. Find $\int f(x)dx =$
 If evaluating a function defined as 	$\frac{2}{6} = \frac{8}{6}$
the integral of the given function	Given the graph of $f(x)$ and $f(0) = 3$
from x to a, then you must add the	E Find $f(-6) = -6$ Find $f(6) = -6$
initial condition given at F(a)	5. Find $f(-0) = 0$. Find $f(0) =$
Given a function, find the area under the	7. Find the area under the curve $f(x) = -x^2 + 6x - 3$
graph over a given interval	on the interval (1, 2).
• Evaluate the definite integral of the	
function over the interval.	
Given a region defined by two functions,	8 Find the area enclosed by $f(x) = 5 - x^2$ and $g(x) = x - 7$
f(x) and $g(x)$, find the area of the region.	
• If $f(x) \ge g(x)$, then	
b	
Area = $\int (f(x) - g(x))dx$	
a	
• If the interval from <i>b</i> to <i>a</i> is not	
given, then <i>b</i> and <i>a</i> are the points of	
intersection of $f(x)$ and $g(x)$	
• Find points of intersection by setting	
f(x) = g(x) and solving for x	

Given a region defined by two functions,	9. Find but do not evaluate an integral to represent the area
f(x) and $g(x)$, with more than two points	enclosed by $f(x) = x^3 - 2x^2$ and $g(x) = 2x^2 - 3x$
of intersection, find the area of the region.	
 Find points of intersection by setting f(x) = g(x) and solving for x Determine which function is greater over each interval Split into two integrals A = ∫_c^b (f(x) - g(x))dx + ∫_a^c (g(x) - f(x))dx Where a, b, and c are points of intersection, c is between a and b, f(x) ≥ g(x) between b and c, and g(x) ≥ f(x) between c and a 	
Given a region defined by two relations	10. Find but do not evaluate an integral to represent the area
where x = some expression of y, the area can	enclosed by the graphs of $x = 3 - y^2$ and $x = y + 1$
be determined by an integral in the y-	
Area = $\int_{c} (f(y) - g(y)) dy$	
Where c and d are the y-coordinates of the	
points of intersection and $f(y) \ge g(y)$	
(graph of $f(y)$ is to the right of $g(y)$)	
Given a region defined by multiple	11. Find but do not evaluate an integral to represent the area
boundaries, find the area.	enclosed by: $2\sqrt{-1}$ 2 -1 1 -2 -1 1 -2 -1
• Determine all intersecting points of	$y = 2\sqrt{x-1} - 3$, $y = -2x + 11$, and the x-axis
the boundaries of the region	
 If necessary, split the region into 	
multiple integrals	